进行定量实验的方法。在微波元件、器件和微波设备的生产的全部过程中,有许多环节需要微波测量对其零部件、半成品和成品进行检测验证,在设计时也需要利用微波测量获得必要的数据。微波测量所需获得的数据包括:基本参量-频率(或波长)、驻波比(或反射系数)、功率。原则上其他参量都可以由此三个基本参量导出;其他参量-衰减、阻抗、相位、散射、谐振、交调、介电常数、品质因数等等。

  现有的微波测量仪表可以比较完美的对这些参数进行直接或间接测量,然而在仪表和待测件的连接上却有很多困难。 微波测量仪表以及测试电缆、传输线的通常连接方式有 N型连接器,SMA连接器,3.5mm连接器,2.92mm连接器,2.4mm连接器,BNC连接器,波导连接器等等。和待测件连接后,需要对仪表进行校准,要求校准的参考面尽量接近待测件的两端。但是很多生产,设计部门要测试和获取参数的器件封装形式多种多样,无法通过以上连接方式和测试仪表直接连接,通过其他手段连接后,又很难把参考面校准到所需要的器件两端。这样,就没有办法获得器件在应用环境下的准确参数。

  微波器件、组件的设计中,尤其是放大器的设计和匹配中,对所使用的微波管以及各种芯片、匹配所使用的电容电感等分离器件的准确参数的缺乏限制了仿真设计的准确度,为产品的研发及生产增加了极大的难度。如何获得微波管、芯片和各种元器件的在实际应用环境下的准确参数,成为各微波生产研发人员迫切地需要解决的问题。

  下面介绍的射频芯片测试夹具正是为以上问题提供了专业的解决方案,便捷的连接方式,精确的校准,使得微波测试测量的仪表的测量范围延伸到了芯片以及各种器件的两端,为设计师的各类仿真设计提供了真实应用环境下的准确的设计参数。同时,也为生产批量大而有必要进行大量测试的芯片、器件厂家和生产商节约了大量的人力和成本。

  射频芯片测试夹具能适应大部分非同轴结构的微波器件、芯片,因此具有多种成系列的整体的结构。下图是射频芯片测试夹具的几种整体的结构及其校准件,包括了测试大功率器件,微封装器件,集成芯片等待测件的产品。对于大功率器件测试时产品还带有独特的散热设计。

  射频芯片测试夹具的基本功能有两个,一是通过测试载片和微带电路将待测件的非标准封装结构转换成可以和测试仪表直接连接的同轴结构;二是通过精密的自带校准件替换载片对整个检测系统进行校准,使得仪表的校准端面延伸的待测件两端。夹具的连接快捷精密,一般是采用压接式,不行固定或焊接,使用起来更便捷;在同轴到微带的转换中采用同轴内导体和微带线直接连接并附加介电常数补偿,周边采用低介电常数环境,使得信号传输最接近立项状态。下图是一种型号夹具微带同轴转换的案例,该结构由夹具主体,滑块和中心滑块组成,中心滑块即为安装待测件载片的核心组件。

  射频芯片测试夹具的校准模式有SOLT校准、TRL校准、去嵌入以及多线校准方案。

  根据测量要求,一般我们推荐使用SOLT校准和TRL校准相结合,在应用频段较窄,封装形式单一的情况下可考虑使用去嵌入法,对精度要求到计量级甚至更高时可使用结合国外最新技术的多线校准方案。

  如果选用的网络分析仪无法创建TRL校准套件模型,以下以8753ES为例,则可以再一次进行选择现有的TRL校准件箱做修改。具体操作为:在校准菜单选择CALKIT-SELETCALKIT,选择TRL3.5mm校准件,TRL OPTIONS:标准阻抗为 LINE Z0;反射标准为 THRU STANDARD。进入MODIFY修改校准件数据:

  如果使用PNA网络分析仪,创建TRL模型后可按向导校准。以下是一个步骤的例子。

RF芯片测试夹具在微波测量中的应用

建设周期:2024/07/08


所获荣誉

景观设计


项目概述
返回列表

申请合作