云层中的雷鸣闪电会发射电磁波,城市中星罗棋布的移动基站和通信天线也在不停地放射着电磁波。

  日常生活中必不可少的家电产品,比如手机、微波炉、电磁炉、电脑、电视、车载电台,甚至电热毯、电吹风、电饭锅、加湿器更让人置身电磁波的天罗地网。

  而5G高频率的引入、IoT设备数量暴涨,以及各种智能硬件的功能升级,都在让我们习以为常的电磁环境,变得愈加复杂。

  在这样的大背景下,如何设计出依然能够很好的满足电磁兼容性EMC认证要求的产品,对硬件工程师来说,就是一件极具挑战性的事情了。

  只有当电磁强度达到某些特定的程度,才会产生电磁污染。像是多年来许多国家长期跟踪的移动手机电磁波问题,事实就证明对人体健康并不可能会产生危害性。

  而为了最大限度地保证电磁波的安全性,EMC电磁兼容性就普遍被工业界提上日常。

  简单来说,就是要求电子设备既能够在电磁环境中保证总系统的稳定工作,不会受到一点干扰就罢工;也要具备良好的“外交能力”,不对外部环境中的别的环境造成过大的干扰,比如充电玩手机时屏幕不听使唤,出现乱跳、翻页等诡异现象,就是劣质充电头产生了电磁波干扰的锅。

  为了让用户家里的电子设备都能够和平共处,相关的EMC电磁兼容性就成为产品顺利进入市场的前提,各个行业也都有着对应的EMC认证标准。

  首先,由于5G网络频段较高的特性,决定了其覆盖范围小于3G/4G网络,也就需要大规模部署小基站,电磁兼容挑战也就应运而生。

  最新出现的电磁干扰源“微基站”,由于毫米波穿透力差,衰减大,就需要配备大量的电磁屏蔽器件,来达到更高的抗干扰能力。

  继续向前,会发现伴随着5G的部署升级,联网设备及大众身边的天线数量也在指数级地增加,各个频率、设备之间也有一定的概率会互相干扰。

  智能手机有个测试项目叫单音灵敏度,就是在距离通道一定频率间隔处施加一个强干扰单音信号,观察手机灵敏度会恶化多少。如果电磁波干扰的是心脏起搏器、人工肺泵、汽车行驶,或者是赛博朋克们植入体内的脑机呢?

  抛开这些极端情况,即使电机工程师来将电磁屏蔽控制在安全范围内,但慢慢的变多的电子设备集体散热,也够大众受的。

  电磁波辐射后引起机体升温,由此产生的热效应,尽管目前伤害不明显,但长期接触下来到底会不可能影响健康,科学界至今没有确切答案,5G的到来自然又增加了新的不确定性。

  一靠阻断传播,把通路切断直接让可能干扰的电磁波过不来,比如滤波法(增加电抗器和 EMI滤波器,从电路层面减少传导骚扰)、屏蔽法(使用带有屏蔽的双绞线,抑制电磁波的辐射)、接地法(地层的增加可以有效提升PCB的电磁兼容性)、隔离法(动力线与其他弱电信号线分开走线)等等。

  二靠增强“体质”,在电子设备中加入更多的电磁屏蔽和导热器件,解决产品间电磁屏蔽和散热问题。比如尽量选用自身发射小的芯片,避开使用大功率、高损耗器件等等,都能将辐射控制在安全水平内。

  在5G网络中,需要大规模的天线阵列来保证传输,这就使得天线的单元个数大幅度提升,不同单元之间的相互干扰也就随之增加了。而传统方式如滤波法隔离,就会导致通信系统的整体尺寸过于庞大,不利于现实中的部署。

  同样的困扰也有几率发生在终端。比如用户早已习惯了轻薄的智能手机,5G手机要在性能、频率、信号等每个方面提升的同时,保持从芯片到射频器件等元件尺寸不增反降,这也对手机生产厂商及供应链提出了新的要求。

  显然,抗电磁干扰的挑战是针对电子产业的集体考验。除了硬件设计厂商的自我迭代之外,材料、制造等配套企业也要跟上,如何让他们积极努力配合产业链升级,值得思索。

  举个例子,不可以使用更大尺寸的元器件,所以5G智能手机就对电磁屏蔽吸波材料和散热材料提出了更高的要求。目前行业内大范围的应用的导热石墨材料,在消费电子领域的市场规模就达近百亿元人民币。

  而随着车联网、家联网甚至体联网在5G网络下的逐渐应用,这些常规场景下电磁屏蔽的效率和性能,也将进入增长期。BCCResearch预测,全球EMI/RFI屏蔽材料市场规模将于2021年达78亿美元,界面导热材料将于2020年达11亿美元规模。

  但要开发新一代光子晶体、超导材料等,从创新底层更新电磁调控方式,所面临的研发费用、实验成本、商业化推广等,都是极大的限制,等待解题人的出现。

  除了材料,代工厂的升级改造也需要针对新的电磁环境做出调整。比如全双工技术(CCFD),就可以在资源不变的情况下,支持2倍数量的设备,保证WiFi传输中的实时性与自动控制,也被看做是5G的关键技术之一。但这需要手机等终端设备的发射机和接收机能够在同一频率同时工作。然而在全双工模式下,如果发射信号和接收信号不正交,发射端产生的干扰比接收到的有用信号要强数十亿倍。如何保证手机在同步收发时不会产生自干扰,就需要极高的干扰消除能力,来解决基站间干扰和终端间干扰,目前仍然没有破解的思路。

  再比如5G芯片的封装,随着通信芯片速率一直上升,传统的封装结构在高频率时会出现辐射超标的情况,天线封装一体化等新模式已经在研发当中。

  即使上游供应商都准备妥当,到了终端硬件厂商这里,如果在前期产品开发时没有考虑到整体的EMC问题,会出现什么情况?

  小则测试时出现一些明显的异常问题,要重新整改或设计,费时费力又费钱;重则不被EMC认证通过,让产品无法顺利问世或走向国际市场。总之,一个“惨”字就对了。

  都说凡事预则立不预则废,为什么如此重要的抗电磁干扰性能就不能规划在前头呢?有业内人士爆料,全国90%以上的电子企业都没有一套EMC设计、验证流程。

  一方面是受“拿来主义”思想,将符合规定标准的供应链元器件进行技术性结合,而对于如何将电磁兼容在产品研制流程中融合并形成规范,没有走心。

  更重要的原因是EMC设计是一个系统工程,小到芯片、封装、PCB等终端,大到基站、数据中心、智慧城市等外界电磁环境,任何一方面因素考虑不周就非常有可能导致产品电磁兼容不佳。

  如系统屏蔽如何设计、滤波怎样实现、接地如何系统考虑等等,充满了大大小小的不确定性,也就让EMC设计成为一个十分“工程师个人主义”的工作。不同的硬件设计人员的产品认知、软件操作能力、设计工具、对EMC的理解,都可能指向不同的方案。

  比如同样是整机辐射超标,有人可能会改变机身的通风孔设计来加大分流;也有人会从内部着手优化辐射源,二者殊途同归,都能提升整机的EMC性能。既然很难得出“最优解”,自然也就见仁见智地“哲学”起来了。

  而比“缺乏意识”更可怕的现实问题是缺乏工具。确切的说,是缺少国产化的EDA设计工具。

  美国实体清单一出,大家都将“EDA工具”与“芯片设计”等同了起来,其实,EMC设计所必不可少的仿真软件,同样是EDA的一种。

  它的价值也不可小觑,用模拟电路EMC设计,代替实验,分析电磁场、元件配置、电线建模、屏蔽效能等等,可以轻松又有效地减少终端硬件的研发周期和成本。

  如果这些工具随着5G为焦点的全球市场争夺而被禁用,由此带来的设计风险与产品风险,将给中国硬件厂商和消费的人带来何种影响,我们不得而知,但肯定不怎么愉快。

  在乘风破浪的5G面前,对这些潜藏在水底的技术暗礁保持警惕,或许关乎生死。

乘风破浪的5G与隐藏在深海的EMC暗礁

建设周期:2024/11/26


所获荣誉

安博棋牌


项目概述
返回列表

申请合作